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Chapter 8

ROTATIONAL   MOTION

A.)  Preliminary Comments and Basic Definitions:

1.)  There exists what is almost a perfect parallel between the world of
translational motion and the world of rotational motion.  That is, every
translational concept so far covered (i.e., kinematics, Newton's Laws, energy
considerations, momentum, etc.) has a rotational counterpart.  We will examine
and discuss everything that normally goes into a standard presentation of
rotational dynamics, but you will only be tested on selected parts.  We will begin
with some definitions.

2.)  Position:  Just as x and y coordinates are used to define the position of
an object in translational dynamics, angular
measures like θ 1 and θ 2 are used to define
the angular position (measured in radians) of
an object, relative to some reference line
(usually the +x axis).

3.)  Why are angular measures done in
radians?

a.)  Consider a circle.  If we take its
radius R and lay it onto the
circumference of the circle, we will create
an angle whose arc length is equal to R
(Figure 8.1a).  Any angle that satisfies this criterion is said to have an
angular measure of one radian.

b.)  Put another way, a one radian angle subtends an arc length ∆ s
equal to the radius of the circle (R).

c.)  With this definition, a one-half radian angle subtends an arc length
equal to (1/2)R (see Figure 8.1b); a two radian angle subtends an arc length
equal to 2R (see Figure 8.1c); and a general ∆θ  radian angle subtends an arc
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length ∆ s equal to R ∆θ  (see Figure 8.1d).  In other words, the most general
expression relating arc-length and angular measure in radians is:

∆ s = R ∆θ .

4.)  Velocity:  Just as a change of position with time is defined as either

average velocity 
  

∆x

∆t
 or instantaneous velocity 

  

dx

dt
, a change of angular position with

time is defined as average angular velocity 
  

∆θ

∆t
 or instantaneous angular velocity 

  

dθ

dt
.

a.)  Whereas the units for velocity are meters/seconds, the units for
angular velocity are radians/second.  The symbol used for angular velocity
quantities is ω  (this is the Greek letter omega . . . actually, it's a baby
omega--capital omegas look like Ω).

b.)  The concept of average angular velocity is not used very much.

c.)  Instantaneous angular velocity is formally defined as

          
  
ω = lim∆θ→0

∆θ
∆t( )

      =
dθ

dt .

d.)  Most elementary rotation problems assume rotational motion in the
x-y plane.  Such motion is one dimensional (the body isn't rotating
simultaneously around two axes, just one--see the BIG NOTE below).  As such,
we can ignore the vector symbolism and write the average angular velocity as:
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ωavg =  ∆θ / ∆ t ,

where ∆θ  is the net angular displacement of the object and ∆ t is the time
interval over which the motion occurs.

The point here is that while this expression appears to be a scalar
equation, it is not.  It matters whether the body is rotating clockwise or
counterclockwise.  We will account for rotational direction shortly (see BIG
NOTE below).

5.)  Big Note and preamble to direction of rotation discussion:

a.)  A TRANSLATIONAL velocity vector is designed to give a reader
three things: the magnitude of the velocity (i.e., the number of meters per
second at which the object is moving); the axis or combination of axes along
which the motion proceeds (unit vectors do this); and the positive or
negative sense of the direction along those axes.

Example:  A velocity vector v = -3i tells us the object in question is
traveling at 3 m/s along the x axis in the negative direction.

b.)  A ROTATIONAL velocity vector is also designed to give the reader
three things: the magnitude of the rotational velocity (i.e., the number of
radians per second through which the body moves); the plane in which the
rotation occurs (i.e., does the rotation occur in the x-y plane or the x-z plane or
some off-plane combination); and the directional sense of the rotation (i.e., is
the body rotating clockwise or counterclockwise?).

c.)  Bottom line:  The notation used to define the rotational velocity vector
needs to convey different information than does the notation used to define a
translational velocity vector.  The format used to convey the rotational
information required is outlined below.

d.)  Rotational direction:

i.)  Consider a disk rotating in the x-y plane (this is the plane in
which almost all of your future problems will be set).  The magnitude of
its angular velocity is, say, a constant ω  = 5 radians/second.  Notice that
although the instantaneous, translational direction-of-motion of each
piece of the disk is constantly changing as the disk rotates, the axis
about which the disk rotates always stays oriented in the same direction.

ii.)  The DIRECTION of an angular velocity vector is defined as the
direction of the axis about which the rotation occurs.
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iii.)  We have already decided that the direction about which our
example's rotation occurs is along the z axis; the angular velocity vector
for the problem is, therefore:

        ωω  = (5 radians/second)k,

where k is the unit vector in the z direction.

iv.)  We have just developed a clever way to mathematically convey
the fact that a rotation is
in the x-y plane.  We have
done so by attaching to the
angular velocity magnitude
a unit vector that defines
the axis about which the mo-
tion occurs.

Put in a little different
context, we have
earmarked the plane of
rotation by defining the
direction perpendicular to
that plane (the z-direction is
perpendicular to the x-y
plane).

v.)  We still have not
designated a way to define
the sense of the motion (i.e.,
whether the rotation is
clockwise or counter-
clockwise).  Assuming we
are looking at motion in the
x-y plane, these two
possibilities are covered
nicely by assigning a
positive or negative sign to
the k axis unit vector being
used to define the axis of
rotation.  That is:

BY DEFINITION,
CLOCKWISE ROTATIONS
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IN THE x-y PLANE ARE DEFINED AS HAVING UNIT VECTOR
DIRECTIONS OF -k, WHEREAS COUNTERCLOCKWISE
ROTATIONS ARE DEFINED AS HAVING UNIT VECTOR
DIRECTIONS OF +k (see Figures 8.3a and 8.3b for a summary of this
information).

Note:  This formalism is not as off-the-wall as it probably seems.  Rotate
a screw counterclockwise and it will proceed upward out of the plane in which it is
embedded (that is how you unscrew a screw).  Define that plane with a standard,
right-handed, x-y axis and the screw is found to unscrew in the +k direction.  A
screw rotated clockwise will proceed into the plane in the -k direction.

As long as we always use a right-handed coordinate system (the standard
within mathematics these days), the notation works nicely.

e.)  Mathematicians have created a mental tool by which one can
remember this rotational formalism.  Called the right-hand rule, it follows
below:

i.)  Mentally place your right hand on the rotating disk so that
when you curl your fingers, they follow the direction of the disk's
rotation.  Once in the correct position, extend your thumb perpen-
dicularly out away from your fingers (i.e., in a "hitchhiker's" position).
If the thumb points upward, the direction of the angular velocity is in
the +k direction.  If you have to flip your hand over to execute the curl,
your thumb will point downward into the plane and the direction of
angular velocity will be in the -k direction.

ii.)  In summary, if our disk were rotating at 5 radians per second in
the clockwise direction in the x-y plane, the angular velocity vector
would be:

ωω  = (5 radians/second)(-k),

which, for simplicity, would probably be written as:

ωω  = -5 rad/sec k.

Note:  As all our problems will be one-dimensional (i.e., rotation in the x-y
plane), there is no need to include the k part of this representation when solving
problems.  IT IS IMPORTANT TO KEEP TRACK OF THE SIGN, THOUGH.  As
such, this angular velocity vector would normally be written as ω  = -5 rad/sec.
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6.)  Acceleration:  Just as a change of velocity with time is defined as either

average acceleration 
  

∆v

∆t
 or instantaneous acceleration 

  

dv

dt
, a change of angular

velocity with time is defined as average angular acceleration 
  

∆ω

∆t
 or instantaneous

angular acceleration 
  

dω

dt
.

a.)  Whereas the units for acceleration are meters/second2, the units for
angular acceleration are radians/second2.  The symbol used for angular
acceleration quantities is α (this is the baby Greek letter alpha).

b.)  The concept of average angular acceleration is not used very much.

c.)  Instantaneous angular acceleration is formally defined as

          
  
α = lim∆θ→0

∆ω
∆t( )

      =
dω

dt .

7.)  NOTICE:  For every translational parameter, we have identified a
comparable rotational parameter.  Translational position is defined using
coordinates like x and y; angular position is defined using angular coordinates with
θ 's measured in radians.  Velocity is defined as dx/dt in meters/second; angular
velocity is defined as dθ /dt in radians/second.  Acceleration is defined as dv/dt in
meters/second2; angular acceleration is defined as dω /dt in radians/second2.

8.)  Relationship between Angular Motion and Translational Motion:

a.)  Consider a point moving
with a constant angular velocity
ω  in a circular path of radius R.
At time t1, the point's angular

position is defined by the angle

  θ1.  At time t2, its angular
position is   θ 2  (see Figure 8.4).

b.)  During the interval ∆ t,
the point travels a translational
distance equal to the arc length
∆ s of the subtended angle ∆θ  =
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(  θ 2 -   θ1).  We know from the definition of radian measure that that arc
length is:

∆ s = R ∆θ .

c.)  Dividing both sides by the time of travel yields:

     ∆ s/ ∆ t = R ( ∆θ / ∆ t).

i.)  The left-hand side of this relationship is simply the magnitude
of the instantaneous translational velocity v of the point as it moves
along the arc (it is actually the magnitude of the average translational
velocity, but because the point is moving with a constant angular
velocity, the average magnitude and the instantaneous magnitude will
be the same).

ii.)  The right-hand side of the equation is the radius of motion
times the magnitude of the instantaneous angular velocity (ω ).

iii.)  In other words, at a given instant the magnitude of a rotating
body's instantaneous translational velocity at a given point will equal
the radius r of the motion  times the magnitude of the body's
instantaneous angular velocity at that same instant.  Mathematically,
this is written:

v = rω .

d.)  Through similar reasoning, the relationship between the
magnitude of a point's instantaneous translational acceleration and the
magnitude of its instantaneous angular acceleration at the same moment is:

a = rα.

B.)  Rotational Kinematic Equations:

1.)  Both the translational kinematic equations and the rotational
kinematic equations are shown on the next page.  As a whole, these equations are
useful in only a very limited sense (remember, you have to have a constant
acceleration or angular acceleration for them to work).  I am, therefore, providing
them for your observation and to show how complete the parallel is between the
translational world and the rotational world, but you will not be directly tested
on them (note that there are no rotational kinematics problems at the end of this
chapter).
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2.)  Note the parallels!

(x2 - x1) = v1 ∆ t + (1/2)a( ∆ t)2 ⇒ (θ2 - θ1) = ω1 ∆ t + (1/2)α( ∆ t)2.   

(x2 - x1) = vavg ∆ t ⇒ (θ2 - θ1) = ωavg ∆ t.

vavg = (v2+v1) / 2 ⇒ ωavg = (ω2+ ω1) / 2.

a = (v2 - v1) / ∆ t    ⇒ α = (ω2 - ω1) / ∆ t.

(v2)2 = (v1)2 + 2a(x2 - x1) ⇒ (ω2)2 = (ω1)2 + 2 α(θ2 - θ1).

3.)  I am not giving you any examples or chapter-end problems to chew on
with regard to rotational kinematics because there is way too much other stuff to
be attended to, and because we simply don't have the time to be super complete.
Nevertheless, I MAY GIVE YOU a translational kinematic equation on your next
test and ask you to write down its rotational counterpart, just for the fun of it.

C.)  A Plug for Rotational Parameters:

1.)  Why rotational parameters?  Why hassle with an "entirely new
parallel system" when the old translational systems seem to do the job just fine?
The answer is, "Simplicity!"

2.)  Consider a rotating disk.  Every point on the disk moves with some
translational velocity.  But as anyone who has ever played "crack the whip" knows,
the farther out from the axis of rotation, the greater the translational velocity.
Remember, vp = Rp ω .

3.)  What is true but is not so obvious is that although the translational
velocity of various pieces of the disk will differ, the angular velocity of each piece
will be the same NO MATTER WHICH AXIS YOU CHOOSE TO MEASURE
THAT ANGULAR VELOCITY ABOUT.

Confused?  Consider the following two scenarios:

a.)  You are sitting in a chair attached to the center of a disk.  The
chair is constrained to face in the same direction at all times (as the disk
turns, the chair does not turn--you find you are always looking at the Point
X shown in Figure 8.5 on the next page). The disk rotates at a constant
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rate through one
complete revolution in,
say, two seconds.
What is the disk's
angular velocity from
the perspective of an
axis through the center
of mass (i.e., from
where you are sitting)?

b.)  The angular
velocity will equal the
number of RADIANS
through which the disk
travels PER UNIT
TIME.  As seen by you,
one revolution is equal
to 2  radians and the angular velocity is:

ωabout cm = (2)/(2 sec)
                        =  rad/sec.

c.)  Your friend
has a similar chair
situated on the
disk's perimeter
(Point P in Figure
8.6).  While you are
experiencing the
rotation of the
disk, he is experi-
encing the same
rotation, with one
big exception.
Being completely
self-involved, he
assumes that all
things revolve
around him.  So as
the disk moves, he
sees its center
rotating about
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himself and not vice versa.
From this perspective, how does the disk seem to rotate?  It seems to

make one complete revolution (2 radians) around Point P in 2 seconds.
That means the disk's angular velocity about an axis through a point on the
perimeter equals:

ωpt.P = (2 rad)/(2 sec)
(=  rad/sec).

d.)  Bottom line:  The angular velocity of a rotating object is the same
no matter what axis is used to reference the motion.  The same is true of
angular acceleration and angular displacement.  If you know the value of or
have an expression for a rotational variable about one axis at a given
instant, you know that variable at that instant about all axes on the
rotating body.

D.)  Rotational Inertia (Moment of Inertia):

1.)  Massive bodies have a tendency to resist changes in their motion.  Put a
truck and a feather in space, blow hard on both, and you'll find the feather is quite
responsive while the truck just sits there.  Why?  Because the truck has more
inertia--it resists changes in its motion considerably more than does the feather.
The mass of a body is a quantitative measure of a body's relative tendency to
resist changes in its motion.  That is, saying the body has 2 kilograms of mass
means that it has twice as much inertia as does a 1 kilogram mass.

2.)  Rotating bodies have rotational inertia.  That is, they tend to resist
changes in their rotational motion.  Rotational inertia is mass related--the more
the mass, the greater the rotational inertia--but it is also related to how the
mass is distributed relative to the axis of rotation.  The more the mass is spread
out away from the axis of rotation, the more rotational inertia.

3.)  Without derivation, the mass related expression that identifies in a
relative sense how much rotational inertia a set of discrete objects have about a
particular axis is given by the expression ∑  miri

2.

4.)  This mass-related quantity is called the moment of inertia.  The
symbol used for moment of inertia is I.
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5.)  The following examples show how
the moment of inertia is dependent upon the
axis about which the quantity is determined.

a.)  Example 1:  Consider two 3 kg
masses connected by a very light (read
that "massless") bar of length 4 meters
(see Figure 8.7).  Determine the
moment of inertia of the system about
an axis through the system's center of
mass.

Solution:

  I = ∑  miri
2

    = m1r1
2 + m2r2

2

    = (3 kg)(2 m)2 + (3 kg)(2 m)2

       = 24 kg.m2.

b.)  Example 2:  Using the bar and
mass set-up presented in Example 1
above, determine the moment of inertia
for the system about an axis through
one of the masses (this axis is denoted in
Figure 8.8).

Solution:

     I = ∑  mi ri
2

        = m1r1
2 + m2r2

2

         = (3 kg)(0 m)2 + (3 kg) (4 m)2

         = 48 kg.m2.

c.)  Example 3:  Consider
the same set-up as above.
Determine the moment of
inertia about an axis located 2
meters to the right of the
right-most mass (see Figure
8.9).  Note that the massless
rod would have to be extended
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out to the right to accommodate such a situation.

Solution:
I = ∑  mi ri

2.

      = m1r1
2 + m2r2

2

      = (3 kg)(2 m)2 + (3 kg)(6 m)2

      = 120 kg.m2.

6.)  As the axis of rotation moves farther and farther from the center of
mass, the moment of inertia increases.  In fact, the moment of inertia will always
be a minimum about an axis through the center of mass.  There is a formula that
allows one to determine the moment of inertia about any axis parallel to an axis
through the center of mass.   Called "the PARALLEL AXIS THEOREM," it states
that the moment of inertia about any axis P is:

     Ip = Icm + Md2,

where Icm is the known moment of inertia about a center of mass axis parallel to P, M
is the total mass in the system, and d is the distance between the two parallel axes.

a.)  Example 4:  In Example 1 above, we calculated the moment of
inertia about the center of mass of our bar and masses system.  Using the
parallel axis theorem, determine the moment of inertia about an axis
through one of the masses (Figure 8.8).

Solution:

Ip = Icm + Md2,

          = (24 kg.m2) + (6 kg)(2 m)2

          = 48 kg.m2.

Again, this is exactly the value calculated in Example 2.

b.)  Example 5:  Determine the moment of inertia for our bar and masses
system about an axis 2 meters to the right of the right-most mass (Figure 8.9):

Ip = Icm + Md2,

          = (24 kg.m2) + (6 kg)(4 m)2

          = 120 kg.m2.
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This is exactly the value calculated in Example 3.

7.)  THINK ABOUT WHAT THE MATHEMATICAL OPERATION WE
HAVE BEEN EXAMINING IS ACTUALLY ASKING YOU TO DO.  It says, move
out a distance "r" units from the axis of interest.  If there is mass located at that
distance out, multiply that mass quantity by the square of the distance "r."  Do this
for all possible "r" values, then sum.

The general moment of inertia equation presented above works fine for
systems involving groups of individual masses, but it would be cumbersome for
continuous masses like the disk with which we began.  To determine the moment
of inertia for structures whose mass is
extended out over a continuous volume
(Figure 8.10) requires Calculus.

Specifically, we must solve the
integral:

  I =
  

r2dm,∫

where dm is the mass found a distance r
units from the axis of choice.

This operation is not something
you will ever have to do.  You will have to
deal with extended objects, though, which
is why the Moment of Inertia Chart is
provided on the next page.  You will not
have to memorize any of these moment of inertia values.  They will be provided
when needed.  In fact, the only moment of inertia expression you will need to
memorize is that for a point mass.  (In the off-chance you haven't yet figured out
the moment of inertia of a point mass about some axis of rotation, it is mr2,
where m is the mass of the point mass and r is its distance from the axis or
interest.)

8.)  The Moment of Inertia Table is found on the next page.
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E.)  Torque:

1.)  So far, we have developed rotational counterparts for displacement,
velocity, acceleration, and mass.  It is now time to consider the rotational
counterpart to force.

2.)  When a net force is applied to an object, the object accelerates
(Newton's Second Law).  Torque is the rotational counterpart to force in the sense
that when a net torque is applied to a body, the body angularly accelerates.

a.)  While force is applied in a particular direction, torque is applied
about a point (the point of interest is usually on the body's axis of rotation).

b.)  Torque calculations were briefly discussed in Chapter 1 (the idea
of a torque was used there as an example of a vector cross product
operation).  We will go into more depth here.

3.)  The easiest way to understand the concept of a torque is with an
example.

a.)  A force F is applied
to a wrench at a distance r
from the axis of rotation
(see Figure 8.11).  From
experience, it should be
obvious that:

i.) The greater   r  is,
the less difficult it is to
angularly accelerate the
bolt;

ii.) The greater   F  is,
the less difficult it is to angularly accelerate the bolt; and

iii.) The force component that makes the bolt angularly accelerate is
the component perpendicular to the line of r (i.e.,   F  sin φ).

b.)  As ease of rotation is related to   r  and   F sin φ , the product of
those two variables is deemed important enough to be given a special
name--torque ( ΓΓ ).  In short, the magnitude of the torque applied by F about
some point will be ΓΓ  =     rxF .  As a vector, torque is defined as:
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ΓΓ  = r x F.

Note:  It is not unusual to find physics texts making statements like, "a
force F applies a torque about the axis of rotation."  This can be confusing
because, by definition, torques are not applied about axes--they are applied
about points.  A more accurate way to make the statement would be to say, "a
force F applies a torque about a point that is both in the plane of the paper and
on the axis of rotation."  Unfortunately, although this is technically correct, it is
also wordy and cumbersome.  As a consequence, physicists shorten such
statements to, "a force F applies a torque about the axis of rotation."

There is nothing wrong with this shorthand description as long as you under-
stand the assumption being made when torque calculations are termed this way.

Bottom line:  From here on out, you will be expected to know what "take
the torque about the axis of rotation" means.

3.)  In the first chapter we found that a cross product is a vector
manipulation involving two vectors (say r and F).  It generates a third vector
whose magnitude is numerically equal to the product of:

a.)  The magnitude of one of the vectors (say   r  in this case), and

b.)  The magnitude of the second vector's component that runs
perpendicular to the first vector (in this case,   F sin φ ).

c.)  Assuming the vector information is in polar notation, the
magnitude of the torque calculation will be the magnitude of a cross
product, or:

    ΓΓF =     rxF
          =   r    F  sin φ ,

where φ  is the angle between the line of r and the line of F.

4.)  The direction of the cross product is perpendicular to the plane defined
by the two vectors.  In the case of a torque produced by an r and F vector in the x-y
plane, this direction is along the z axis in the k direction.  That is fortunate.
Remembering that the direction of an angular velocity and angular acceleration
vector is along the axis of rotation, a torque that makes an object rotate in the x-y
plane should have a direction perpendicular to the x-y plane (i.e., in the direction



Chapter 8--Rotational Motion

269

r   = 3 meters

F  = 8.6 nts
wrench

0 = 60

y

F  = 5 ntsx

o

F   = 10 nts

FIGURE 8.12

of the axis of rotation about which the angular acceleration is taking place).  That
is exactly the direction the cross product gives us.

5.)  There are three ways to
calculate a cross product and, hence, a
torque.  All three will be presented
below in the context of the following
problem:  A 10 newton force is applied
at a 60o angle to a giant wrench 3
meters from the axis of rotation (see
Figure 8.12).  How much torque does
the force apply about a point on the
central axis of the bolt (i.e., on the axis
of rotation) in the plane of the wrench?

a.)  The "definition"
approach:  Take the definition of
a cross product and apply it to the situation.  Doing so yields:

    ΓΓF =     rxF
           =     r          F        sin φ ,

          = (3 m) (10 nts) sin 60o

          = 25.98 nt.m.

The direction is determined using the right-hand rule.  Doing so yields
a +k direction.  As our rotation is one-dimensional (i.e., there is only one
axis about which the rotation occurs) in the x-y plane, we don't need to
include the k unit vector.  We do need to include the "+" sign (it tells us that
the torque will attempt to angularly accelerate the object in the
counterclockwise direction).  The end result is, therefore:

        ΓF = +25.98 nt.m.

b.)  The "  r ⊥" approach:  We know that the magnitude of a cross product
is equal to the magnitude of one vector times the perpendicular component
of the second vector (i.e., the component of the second vector perpendicular
to the line of the first vector).  If we let F be the first vector, the
"perpendicular component of the second vector" will be the component of r
perpendicular to the line of F.   Calling this  term   r⊥ , we have:

  ΓΓF  =   r ⊥( )  F .
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 Note 1:  This approach is so commonly used that most texts give   r⊥  a
special name.  They call it the moment arm.  Using that term, we write, "the
torque about Point P is equal to the force times the moment arm about Point P."

Why is the   r⊥  approach used so often?  Read Note 2!

Note 2:  Physically,   r⊥  is the shortest distance between the point about
which the torque is being taken (usually on the axis of rotation) and the line of the
force.  As it is often easy to determine the shortest distance between a point and a
line, this method of calculating torques is very popular.

Note 3:  Having extolled
the virtues of the   r⊥  approach, it
should be pointed out that in this
particular problem, the easiest
way to determine the torque is by
using either the definition ap-
proach or the approach that will
be presented last.  Be that as it
may,   r⊥  is what we are concerned
with here!

CONTINUING:  Consider
Figure 8.13.  The line of F has
been extended in both directions,
allowing us to see the shortest
distance between "the axis of
rotation and the line-of-the-force"
(i.e.,   r⊥ ).  With that and a little
geometry, we find that:

      ΓΓF  =                     rxF

                 =            r ⊥( )                F

                 = [(3 m) (sin 60o)]  (10 nts)
                 = 25.98 nt.m.

Note:  The direction is determined using either the right-hand rule or your
knowledge about clockwise versus counterclockwise rotations.  The final solution
is +25.98 nt.m.
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c.)  The "  F⊥ " approach:  We know that the magnitude of a cross
product is equal to the magnitude of one vector times the perpendicular
component of the second vector (i.e., the component of the second vector
perpendicular to the line of the first vector).  If we let r be the first vector,
the "perpendicular component of the second vector" will be the component
of F that is perpendicular to the line of r.  Calling this component   F⊥ , we
have:

  ΓΓF  =   F⊥( )  r .

Note 1:  This is the flip-side of the   r⊥  approach and it works in
approximately the same way.  Extend the line of r until you can see the
component of F perpendicular to that line.  With that information, you simply
multiply the magnitude of r by   F⊥ .

Note 2:  This approach is most useful whenever you are given the force
component perpendicular-to-the-line-of-r.  Our problem is a good example of such
a situation.  The vector r is in the x direction.  We know   F⊥  because it was given
to us (look back at Figure 8.12).  With that unit vector information, the   F⊥

approach falls out nicely.
Bottom line:  If you are given information in unit vector notation, think   F⊥

approach.  It won't always work, but when it does it will work easily.

Continuing:  As   F⊥  is Fy, we can write:

  ΓΓF  =     rxF

                         =      F⊥( )       r
                 = [8.6 nts] (3 m)
                 = 25.8 nt.m.

Note:  The direction is determined using either the right-hand rule or your
knowledge about clockwise versus counterclockwise rotations.  The final solution
is +25.98 nt.m.

d.)  Even though the   r⊥  approach is often used, there is really no one
approach that is better than any other.  For some problems, the   r⊥

approach is a horror.  KNOW THEM ALL.  It's better to have a choice than
to get hung with a problem that doesn't seem to easily work out using the
only approach you have learned!
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F.)  Rigid Body Equilibrium Problems:

1.)  There are two kinds of equilibrium: dynamic equilibrium in which a
body is moving but not accelerating, and static equilibrium in which a body is at
rest and not accelerating.  The common denominator is no acceleration.

Put another way, if one has equilibrium:

a.)  The sum of the forces acting in the x direction must add to zero  (if
that weren't the case, we would see translational acceleration in the x-
direction);

b.)  The sum of the forces in the y direction must add to zero; and

c.)  The sum of the torques acting about any point must add to zero (if
that weren't the case, we would see angular acceleration).

2.)  Example:  A ladder of length L is
positioned against a wall.  The wall is
frictionless and the floor is frictional.  A man of
mass mm stands on the ladder a distance L/3
from the top.  If the ladder meets the floor at an
angle θ  with the horizontal, and if the ladder's
mass is mL, determine the forces acting at the
floor and the wall.  See Figure 8.14.

a.)  Preliminary Comment #1:  In
looking at the ladder's contact with the
floor, it should be obvious that there is
both a normal and a frictional force act-
ing at that point.  Assume, for the
moment, that that fact is not obvious.

In that case, all we know is that the
floor must be providing a net force Ffloor
acting at some unknown angle φ  (note that φ  is not θ  here).  From experience,
we know that unknown forces are easy to deal with, but the math can get dicey
when unknown angles are injected into a situation (angles are usually
attached to sine and cosine functions which can make solving simultaneous
equations difficult).  It would be nice if we could deal with a force-at-the-floor
problem without having to deal with the unknown angle.

That can be cleverly done by noticing that the force-at-the-floor must
have x and y components.  Calling the horizontal component H and the
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vertical component V, we can solve for those variables.  We will still have
two unknowns (H and V versus Ffloor and φ ) but we will have traded off for
a tidier problem.

Note:  Another example of a
situation in which this ploy will be
useful: Consider a lab comprised of a
beam pinned so as to rotate about an
axis at its end (see Figure 8.15).  You
know absolutely nothing about the
magnitude and direction of the force
acting on the beam at the pin, but you
are asked to theoretically determine
what that force and angle should be
under the circumstances embodied
within the set-up.  This is a prime ex-

m   g

N

H

V

0

L

2L/3
m   g

m

L f.b.d. on
  ladder

FIGURE 8.16

ample of a situation in which solving for the components is preferable to hassling
with the actual force vector and its angle.

b.)  Preliminary Comment #2:
Because the wall is frictionless, the
force acting at the wall is strictly a
normal force.  As such, we will call
that force N.  Note also that the
ladder's weight mLg is
concentrated at the ladder's center
of mass at L/2.  This is all shown in
the free body diagram presented in
Figure 8.16.

Solution:

c.)  All the acting forces are in
the x and y directions, so there is no
need to worry about breaking forces
into their component parts.  We
begin by writing:

  ∑ Fx :

        -N + H = (mm+ mL) ax       (= 0 as  ax= 0)
             ⇒     N = H.
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∑ Fy :

         -mmg - mLg + V = (mm+ mL) ay       (= 0 as  ay= 0)
             ⇒     V = (mm+ mL) g.

d.)  We have three unknowns and two equations.  The final equation
comes from summing the torques about any point we choose.  For the sake
of amusement, let's choose the ladder's center of mass.  Using   r⊥ :

  ∑ Γ cm :

  N [(L/2) sin θ ] - mmg [(L/6) cos θ ] - V [(L/2) cos θ ] + H [(L/2) sin θ ] = Icm α 
      = 0 as α = 0

⇒     N = [(mmg/6) cos θ  + (V/2) cos θ  - (H/2) sin θ]/[(1/2) sin θ]

Note 1:  The equation we have generated above has four torque calcula-
tions instead of five--the torque due to the weight of the beam produces no torque
about the center of mass as that force acts through the center of mass.  Forces that
act through the point about which the torque is being taken produce no torque about
that point.

Note 2:  This last equation is comprised of three unknowns.  To solve it, we
will have to go back to our original two equations, lift the derived values for V and
H (in terms of N) and plug them into this last equation.  The end result will be a
very messy equation to solve.  Once N is found, we will then have to go back, plug
N into the H and V equations and solve some more.

It would have been so much easier to have generated a "final" equation
that had only one unknown in it (say, N).  We could have done just that if we had
summed the torques about the floor!

Doing so yields:

  ∑ Γ floor :

     N [L sin θ ] - mmg [(2L/3) cos θ ] - mLg [(L/2) cos θ ] = Ifloor α = 0
⇒    N = [(mmg) (2/3) cos θ  + (mLg) (1/2) cos θ ] / sin θ .

This is a smaller equation (you had to do torque calculations for only three forces)
and has only one unknown.
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Bottom Line:  Take your torques about whichever point will eliminate as
many unknowns as possible (assuming you don't eliminate them all).

G.)  Rotational Analog to Newton's Second Law:

1.)  Just as a net force motivates a body to translationally accelerate, a
torque motivates a body to angularly accelerate.  For translational motion,
Newton's Second Law states that the sum of the forces acting in a particular
direction will equal the mass of the object times the object's acceleration.
Mathematically, this takes the form:

    ∑ Fx :

(F1,x)  +  (F2,x)  +  (F3,x)  +  . . . = +max.

For rotational motion, Newton's Second Law states that the sum of the torques
acting about any point must equal the moment of inertia (the mass-related
rotational inertia term) about an appropriate axis through that point times the
object's angular acceleration.  Mathematically, this looks like:

  
∑ Γ p :

( ΓF1
)  +  ( ΓF2

)  +  ( ΓF3
)  + . . . = +Ip α

The easiest way to see the consequences of this law is by using it in a problem.

2.)  Example:  Determine the
angular acceleration α  of the beam
shown in Figure 8.17a.  Assume you know
its length L, its mass m, and the fact that
the moment of inertia of a beam about its
center of mass is (1/12)mL2.

a.)  Using the f.b.d. shown in
Figure 8.17b and the Parallel Axis
Theorem, the sum of the torques
about the axis of rotation (i.e., the
pin) is:
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∑ Γ pin :

     -mg (L/2) cos θ  = - Ipin α

                = - [      Icm       +    md2    ] α

  = - [(1/12) mL2 + m(L/2)2] α
    ⇒     α  = 3 (g cos θ )/(2L).

b.)  Notice that the angular
acceleration is a function of the beam's
angular position θ .  As θ  changes while
the beam rotates, the angular acceleration
changes.  Conclusion:  If you had been

asked to determine, say, the angular velocity of the beam at some later
point in time, you would NOT be able to use rotational kinematics to solve
the problem.

H.)  Rotation And Translation Together--Newton's Second Law:

1.)  Determine the acceleration of the
hanging mass shown in Figure 8.18 if it is
released and allowed to accelerate freely.
Assume you know the mass of the hanging
weight mh, the pulley's mass mp, radius R, and
the moment of inertia about its center of mass
Icm = (1/2) mpR2 (we are taking the pulley to be
a uniform disk).

a.)  We are looking for an
acceleration.  This should bring N.S.L.
to mind almost immediately.  Using
that approach with the f.b.d. shown in

f.b.d. on
hanging
   mass

m  g

T

h

FIGURE 8.19

Figure 8.19  yields:

  
∑ Fy :

     T - mhg = -mha
         ⇒     T = mhg - mha      (Equ. A).
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There are two unknowns in this equation, T and a.  We need another
equation.

b.)  Figure 8.20 shows a free body
diagram for the forces acting on the pulley.
Summing the torques about the pulley's
pin yields:

  ∑ Γ cm :

- TR = - Icm α

        = - [(1/2) mpR2] α
       ⇒    T = [(1/2) mpR] α.

c.)  We can further simplify this equation by remembering that the
translational acceleration a of a point on the PULLEY'S EDGE a distance R
units from the axis of rotation (this will also be the acceleration of the
string) is related to the angular acceleration α  of the pulley by:

a = R α.

Using this to eliminate the α  yields:

T = [(1/2) mpR] (a/R).
    = (1/2) mp a (Equation B).

d.)  Putting Equation A and Equation B together yields:

       (1/2) mp a = mhg - mha
  ⇒    a = (mhg)/(mh + mp/2).

2.)  A trickier problem:  Consider the
Atwood Machine shown in Figure 8.21.  If the
pulley is massive and has the same characteristics
(i.e., mass, radius, moment of inertia, etc.) as the
one used in the problem directly above, determine
the magnitude of the acceleration of the masses as
they freefall.  (Assume m1 is more massive than
m2.)
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Note:  Notice that the
f.b.d. in Figure 8.22a depicts
a peculiar situation.  If both
tensions are T, the net
torque acting about the
pulley's center of mass is
zero.  That is, if both
tensions are equal, they
produce torques that are
equal in magnitude and
opposite in direction and,
hence, cancel one another
out.  With no net torque acting on the pulley, it will not angularly accelerate.  And
with no angular acceleration, it will not rotate.

This clearly is an unacceptable situation--everyone knows that pulleys
rotate.  The problem?  When a pulley is massive, the tension in a rope draped over
it will not be equal on both sides, assuming the system is angularly accelerating.
A more accurate depiction of the forces acting on a massive pulley is, therefore,
seen in Figure 8.22b.

a.)  Figure 8.23a shows the f.b.d. for mass m1:
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b.)  Newton's Second Law  yields:

  
∑ Fy :

                      T1 - m1g = - m1a
             ⇒     T1 = m1g - m1a.

Call this Equation A (note the sign in front of the acceleration term).

c.)  Figure 8.23b shows the f.b.d. for mass m2.  N.S.L. yields:

  
∑ Fy :

                       T2 - m2g = m2a
       ⇒     T2 = m2g + m2a.

Call this Equation B.

d.)  At this point, we have three unknowns (T1, T2, and a) and only two
equations.  For our third equation, we need to look at the pulley.

e.)  Figure 8.24 shows the
f.b.d. for the pulley.  The
rotational counterpart of
N.S.L. yields:

  ∑ Γ cm :

T1R - T2R = Icm α

= [(1/2) mpR2] α

  ⇒    T1 - T2 = [(1/2) mpR] α

Call this Equation C (note the sign in
front of the angular acceleration term).
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f.)  Equation C introduces another unknown, α.  Fortunately, we know
α  in terms of a and R:

astring = R α (Equation D),

which leaves us with:

 T1 - T2 = [(1/2) mpR] (a/R)
 = (1/2) mpa.

g.)  Using Equations A, B, C, and D, we get:

                   T1        -          T2        = (1/2) mp a
(m1g - m1a) - (m2g + m2a) = (1/2) mp a

   ⇒   a = [m1g - m2g]/[m1 + m2 + mp/2].

3.)  Rotation with a twist:  Consider a
hollow ball of radius R and mass m rolling down
an incline of known angle θ  (Figure 8.25).  What
is the acceleration of the ball's center of mass as
the ball rolls down the incline?

a.)  The free body diagram for the forces
and force-components acting on the ball is
shown in Figure 8.26.  The axis has been
placed along the direction of the
translational acceleration of the ball's center
of mass--i.e., along the line of the incline.
Noting that there must be rolling friction in the system, a summing of the
forces along that line yields:

    ∑ Fx :

       fr - mg sinθ   = - macm.

Call this Equation A.

b.)  This would be easy if we knew
something about the rolling friction
between the ball and the incline.  As we do
not have that information, we haven't a
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clue as to the magnitude of the rolling frictional force fr.
Stymied, let's consider the rotational counterpart to N.S.L.

c.)  Noticing that both the normal force and the force due to gravity
pass through the center of mass, summing the torques about the center of
mass yields:

  ∑ Γ cm :

fr R = Icm α

             = [(2/3) mR2]α
         ⇒     fr = [(2/3) mR]α (Equation B).

d.)  We know the relationship between the acceleration of the center of
mass (acm) and the angular acceleration about the center of mass is:

acm = R α (Equation C).

This means we can write:

fr = [(2/3) mR] (a/R)
    =  (2/3) ma.

e.)  Combining Equations A, B and C yields:

  fr      - mg sinθ    = - macm
⇒   (2/3) ma - mg sinθ    = - macm

⇒   acm = [g sin θ]/[1 + (2/3)]
    = (3/5)g sin θ .

  Note:  Knowing the translational acceleration of the center of mass, we can
determine the angular acceleration of the ball using acm = Rα :

acm = R α
        ⇒    α = acm / R

        = [(3/5)g sin θ ] / R.
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I.)  A Weird But Effective Alternate Approach:

1.)  There exists an altogether different way of looking at problems in
which a body rolls without slipping.  The following endeavors to present the
rationale behind the needed
perspective.

2.)  Consider an incline so
slippery that a ball is sliding down its
face without rolling at all (see Figure
8.27).

a.)  Relative to the incline,
there will be sliding motion
between the bottom of the ball
(i.e., the point on the ball that
touches the incline--Point P in
Figure 8.27) and the incline
itself.

b.)  Put another way, at any
given instant the point-on-the-ball that happens to be in contact with the
incline will have a velocity along the line of the incline (in the x direction)
relative to the stationary incline.

c.)   Bottom line:  Point P moves; the incline does not.

3.)  A ball that rolls without slipping, on the other hand, will experience no
relative motion in the x direction
between the point that happens to be
in contact with the incline (Point P in
Figure 8.28) and the STATIONARY
incline.

a.)  This not-so-obvious
fact is justified as follows:  If
the ball is NOT SLIDING over
the incline's surface (i.e., as
long as we are not dealing with
the case cited in Part 2 above),
the velocity of the stationary
incline and the velocity of the
NON-SLIDING point-of-
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contact-with-the-incline must be the same.

b.)  Bottom line:  If the incline's velocity in the x direction is zero, Point
P's instantaneous velocity in the x direction must also be zero.

4.)  Let us now take a few moments to re-examine the rolling situation in
which there is no slippage between the ball and the incline.

a.)  Relative to the incline, the top of the rolling ball (by top, we are
talking about the point on the ball farthest from the incline's surface--the
point whose y coordinate is greatest; this is labeled Point A in Figure 8.28)
is instantaneously translating faster than the center of mass of the ball,
and the center of mass is instantaneously translating faster than the bot-
tom (i.e., Point P).

b.)  In fact, the velocity of Point A is twice that of the center of mass.

c. )  As stated above, Point P is NOT MOVING AT ALL instanta-
neously in the x direction, relative to the stationary incline (if this isn't
clear, ask in class or look at the Note at the end of the chapter).

5.)  Consider another situation.  The ball in Figure 8.28 is taken off the
incline and a pin is placed through Point P.  The pin is mounted so that the ball
can rotate freely about the pin.  The ball is then allowed to freefall.  What can we
say about the ball as it rotates about an axis through this point on its
circumference?

a.)  Begin by examining Figure 8.29.

b.)  Notice that Point
A on the ball is instanta-
neously translating
faster than the center of
mass of the ball, and the
center of mass is
instantaneously trans-
lating faster than the
bottom (i.e., Point P).

This is exactly the
same characteristic as
was observed in the
instantaneous "rolling"
situation outlined above.
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c.)  Also, the instantaneous velocity of Point A is twice that of the center
of mass.

Again, this is exactly the same characteristic as was observed in the
instantaneous rolling situation outlined above.

d.)  Notice that the translational velocity of the ball at Point P (i.e., at
the axis of rotation) is zero.

For the last time, this is exactly the same characteristic that was
observed in the instantaneous rolling situation outlined above.

6.)  The characteristics of motion for a ball rolling down an incline and a
ball pinned to execute a pure rotation appear to be quite similar.  In fact, the
question arises, "If you could not see what was supporting the ball and only got a
quick look, could you be sure which of the two situations you were observing?"
That is, could you tell if you were seeing:

a.)  A ball rolling down an incline (i.e., rotating about its center of mass
while its center of mass additionally translates downward toward the left);
or

b.) A ball executing a pure rotation about an axis through its perimeter?

c.)  The fact is, if all you got was a glance, it would be impossible to tell
the difference between the two situations.

d.)  Consequences:  When dealing with a body that is both translating
and rotating without slippage (i.e., executing a pure roll), an alternate way
to approach the situation is to treat the moving object as though it were
instantaneously executing a pure rotation about its point of contact with
the surface that supports it (Point P in the sketch).  Analysis to determine,
for instance, the "instantaneous acceleration of the center of mass" at a
particular instant will yield the same answer no matter which perspective
you use.  As far as the bottom line goes, they are identical.

7.)  Do you believe?  Let us try both approaches on the same problem and
see how the two solutions compare.  Reconsider the "ball rolling down the incline"
problem.
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problem from the point of view of a ball rolling down an incline.   The
solution for the ball's angular acceleration about its center of mass, derived
in Part 3e of the previous section, was:

    α = [(3/5)g sin θ ]/R.

b.)  Consider now a pure rotation about Point P:

i.)  From the free body
diagram shown in Figure 8.31, we
begin by summing the torques
about Point P.  As the normal and
frictional forces act through Point
P, the   r⊥  approach yields:

  
  
∑ Γ p :

(mg)(R sin θ ) = Ipα.

ii.)  We do not know the
moment of inertia about Point P,
only the moment of inertia about
the center of mass.  As the torque is being taken about Point P, we need
Ip.  Using the Parallel Axis Theorem, we write:

 Ip = Icm + Md2

          = (2/3)mR2 + mR2

          =  (5/3)mR2.



286

Note:  The variable m in the above equation is the total mass in the
system (this happens to be the mass of the ball in this case); d is the distance
between the two parallel axes (i.e., the axis through the center of mass and the
axis through Point P); and m is the mass of the ball.

iii.)  Completing the problem:

  
∑ Γ p :

                (mg)(R sin θ ) = Ipα

                (mg)(R sin θ ) = [(5/3) mR2]α

  ⇒    α =  [g sin θ ]/[(5/3)R]

      =  [(3/5)g sin θ ]/R.

iv.)  This is exactly the angular acceleration solution we
determined using the "rolling" approach to the problem.  If we
additionally wanted the instantaneous translational acceleration of
the center of mass, we could use acm = Rα , yielding:

acm = Rα
       = R [(3/5)g sin θ ]/R

    = (3/5)g sin θ .

Again, this is exactly what we determined using the other method.

c.)  Bottom line:  There are two ways to deal with a rolling object that
is not additionally sliding.  You can either treat it:

i.)  As a body executing a pure roll (i.e., as a body whose mass is
rotating about its center of mass while its center of mass is itself
translating); or

ii.)  As a body instantaneously executing a pure rotation about its
perimeter at the point of contact with the structure that supports it.

8.)  Which way is the best?  It depends upon you.  The first approach is
more conventional but requires the use of both the translational and rotational
counterparts to Newton's Second Law.  The second approach (the "weird" one)
requires only the use of the rotational version of N.S.L., but the torques are not
taken about the center of mass so the parallel axis theorem must be used to
determine the moment of inertia Ip about the appropriate axis.
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My suggestion is that you use the approach that seems most sensible, given
what the system is doing.  If, for instance, it is executing a pure rotation, use the
rotational approach.  If there's rotation and translation happening, use that approach.

J.)  Energy Considerations and Rotational Motion:

1.)  Remembering back, energy considerations are useful whenever the
forces in a system are conservative and the velocity or a distance traveled is the
parameter of interest.  Briefly, energy considerations and the modified
conservation of energy equation were derived as follows:

a.)  We began by writing out the WORK/ENERGY THEOREM (i.e., the
net work done on an object is equal to the change of the body's kinetic
energy) for a body that moves from Position 1 to Position 2 under the
influence of a number of forces.  The equation was:

            Wnet                    = ∆ KE
        ⇒    WA + WB + WC + WD + . . . = ∆ KE,

where WA was the work force A did on the object as it moved from Position
1 to Position 2, etc.

b.)  We derived expressions for the work done by all the conservative
forces with known potential energy functions as the body moved from
Position 1 to Position 2:

     Wcons force A = -       ∆ UA
                          = - ( UA,2 - UA,1)

c.)  We derived a general expression for the work done by any non-
conservative force.  We did the same for any conservative forces for which we
did not know a potential energy function.  For both cases:

         WnoPEfct,C = FC . d        etc.

d.)  Putting it all into the work/energy theorem (i.e., Wnet = ∆ KE), we
ended up with:

                [-(UA,2- UA,1)] +  [- (UB,2- UB,1)] + (FC . d) + (FD . d) + . . . = (1/2) mv2
2 - (1/2 )mv1

2.
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e.)  Rearranging by putting the "before" quantities on the left-hand side of
the equation and the "after" quantities on the right-hand side, we got:

          (1/2)mv1
2+ UA,1+ UB,1+ (FC . d) + (FD . d) + . . . = (1/2)mv2

2+ UA,2 + UB,2.

f.)  This was put in short-hand form:

  KE1 + ∑  U1 + ∑  Wextraneous = KE2 +  ∑ U2.

g.)  The last touch: We noticed that in a system of more than one body,
the total kinetic energy in the system at a given instant is the sum of all
the kinetic energies of all the bodies moving in the system at that instant.
As such, the final form of the modified energy conservation equation
became:

∑  KE1 + ∑  U1 + ∑ Wextraneous = ∑  KE2 +  ∑  U2.

2.)  This equation also works fine for rotating systems.  There are only two
changes to be made:

a.)  Although there may still be kinetic energy due to the translational
motion of bodies within the system, there can now also be kinetic energy
due to the rotational motion of bodies within the system.  That means the
total kinetic energy term has a new member--rotational kinetic energy.  As
such, we need to write:

∑  KE1 = ∑  KE1,trans + ∑  KE1,rot.

Note:  We determined at the end of the last chapter that just as the
translational kinetic energy of an object is (1/2)mv2, the rotational kinetic energy of
an object is (1/2)(Iaxis of rot)ω 2.

b.)  Concerning gravitational potential energy:  Consider a body that
moves some vertical distance h in a gravitational field.  Its change of
potential energy will be +mgh.  Why?  Because the potential energy function
for gravity is related to the vertical distance traveled.  The question is, "How
do you determine the vertical distance traveled if the motion is that of a
rotating body?"

i.)  Example:  A pinned beam rotates from one angular position to
a second (see Figure 8.32).  What is its change of potential energy
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FIGURE 8.33

during the move?  Put another
way, what is h in the mgh
equation that defines changes of
gravitational potential energy?

ii.)  As shown in the sketch, h
is defined as the vertical
displacement of the body's center
of mass.

Note:  As there is rotational kinetic
energy, is there rotational potential energy?

The answer to that question is yes
and no.  It is theoretically possible to define
a potential energy function that tells you how
much work a torque Γ  does on a body as the
body moves through some angular
displacement ∆θ , but you will not deal with such a function in this class.

Nevertheless, when you use the conservation of energy equation you may be
asked to determine the amount of work (F.d) done as friction acts at the axle of a
rotating object.  In that case, d equals r ∆θ , where r is the distance between the
axis of rotation and the place at which the friction acts.

K.)  Energy Consideration Examples:

1.)  A typical Pure Rotation Problem:  A
beam is frictionlessly pinned (see Figure 8.33).
From rest, the beam is allowed to freely rotate
about its pinned end from an angle θ 1 = 30o

with the vertical.  If the beam's mass is M, its
length is L = 2 meters, and its moment of inertia
about its center of mass is (1/12)ML2, what is
its angular velocity as it passes through   θ 2 =

70o with the vertical?

a.)  We are looking for a velocity (it is
an angular velocity, but a velocity
nevertheless).  The first approach that
should come to mind whenever a body
falls in a gravitational field and a
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velocity value is requested is the modified conservation of energy approach.
Executing that approach yields:

∑  KE1  +  ∑  U1      + ∑  Wextran  =    ∑  KE2        +  ∑  U2
     0    + Mg (L/2) (cos θ1 - cos θ2)   +    0           =  (1/2)Ipω2

2    +     0  .

Note 1:  Notice that there was no initial angular velocity.  That didn't have
to be the case.  DON'T BE LULLED INTO THE BELIEF THAT v1 AND ω 1 WILL
ALWAYS BE ZERO!

Note 2:  Figure 8.34
illustrates how the position of
the center of mass (depicted by
a circle on the beam) changes
during the drop.  The right
triangle used to determine the
final position of the c. of m.
relative to the pin is shown in
the drawing.  A similar triangle
would be used to determine the
c. of m.'s initial position.  The
difference between the two
yields the drop distance h.

b.)  We know the
moment of inertia about the
center of mass.  We need the
moment of inertia about the pin.  Using the Parallel Axis Theorem, we get:

Ip = [(1/12) ML2] + M(L/2)2

    =  (1/3) ML2.

c.)  Putting it all together and solving, we get:

Mg[(L/2)(cos 30o - cos 70o)] =  (1/2)(ML2/3)ω2
2.

d.)  The M's cancel, leaving:

   (9.8 m/s2 )(2 meters /2)(.524) = .5[(2 meters)2/3] ω2
2

  ⇒ ω2 = 2.78 radians/sec.
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2.)  A typical Rotation and
Translation Problem:  Consider a string
wrapped around a massive pulley.  One end
of the string is attached to a hanging weight
of mass m.  The system is allowed to accel-
erate freely.  At some instant, the hanging
weight is observed to be moving with
velocity v1 = 3 m/s.  What will its velocity be
after it has fallen an additional .8 meters?
You may assume that the pulley's mass is
M = 4m, its radius is R, and its moment of
inertia is 3mR2.  The system is shown in
Figure 8.35.

a.)  Initially, there is kinetic en-
ergy wrapped up in both the rotating
pulley and the hanging mass, and
there is initial potential energy wrapped up in the hanging mass.  Using the
Conservation of Energy equation on this situation yields:

              KE1                +  ∑  U1    + ∑  W =         ∑  KE2                 + ∑  U2
         [.5Ipul,cm ω1

2 + .5mv1
2] +  mgh1   +  0      = [.5 Ipul,cm ω2

2 + .5 mv2
2] +  [0]

    ⇒     .5 (3mR2)ω1
2  + .5mv1

2 + mgh1 = .5 (3mR2)ω2
2 + .5 mv2

2 .

Important Note:  Why not include tension in the line in the work
calculation?  The short answer:  Because it's an internal force.  The long answer:
Because the work that tension does on m is -Th while the work that tension does
on the pulley is +T(  R∆θ ) = +Th.  The consequence of all of this is that the net
work done by the tension T (again, an internal force) is ZERO.

b.)   We know that the velocity v of the string (hence the velocity of the
hanging mass) is the same as the velocity of the edge of the pulley.  This
equals R ω .  That means ω  = v/R.  Using this, we can cancel the m's,
eliminate the w terms and solve:

   .5 (3mR2)(v1/R)2 + .5mv1
2 + mgh1 = .5 (3mR2)(v2/R)2 + .5mv2

2

             1.5v1
2 + .5v1

2 + gh1 = 1.5v2
2 + .5v2

2

      2v1
2 + gh1 = 2v2

2
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⇒     v2 = [v1
2 + gh1/2]1/2

   = [(3 m/s)2 + (9.8 m/s2)(.8 meters)/2]1/2

   = 3.59 m/s.

c.)  The question could as easily have asked for the final angular
velocity of the pulley.  It is the same problem with one exception: you would
have eliminated the v terms with v = Rω  instead of eliminating ω  with ω
= v/R.

If we knew beforehand that v2 = 3.59 m/s, we would have used v = Rω
to calculate:
            ω2 = v2/R

    = (3.59 m/s)/R.

3.)  A typical Rotation and Translation
Mixed In One Problem:  Figure 8.36 shows a ball
rolling up a 30o incline.  At the initial instant,
the ball's center of mass is moving with velocity
v1 = 8 m/s.  How fast will its center of mass be
moving after traveling an additional .3 meters
up the incline?  Assume the ball's mass is m = .2
kg, its radius is R = .1 meters, and its moment of
inertia about its center of mass is (2/5)mR2.

Note:  Thinking back to the section on
angular acceleration and Newton's Second Law,
we found that any situation in which an object
rolls without slipping can be treated either as: 1.) motion around the center of
mass plus motion of the center of mass (i.e., a roll), or  2.) an instantaneous, pure
rotation about the point of contact between the object and the support upon which
it rolls (i.e., a pure rotation).  We will approach this problem both ways.

The "rotation and translation of the center of mass" approach:

a.)  Looking at the ball's motion when first observed, two kinds of
motion are taking place relative to the ball's center of mass.  The ball is
rotating around its center of mass with angular velocity   ω 1 , and the ball's
center of mass is itself moving with velocity v1.  In other words, the initial
kinetic energy, as far as the center of mass of the system is concerned, is:
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    KE1,tot = (1/2)I1,cm ω1
2 + (1/2)mv1

2.

b.)  For the sake of ease, let us define the gravitational potential energy
of the ball when at Position 1 as zero.

c.)  (THIS IS IMPORTANT):  Rolling friction exists within the system,
but rolling friction does so little work on the ball that the energy loss due
to it is negligible.  As such, we will approximate it to be zero.  That means
that there are no extraneous forces doing work on the system which, in
turn, means that  ∑  Wextr = 0.

d.)  Writing out the conservation of energy equation, we get:

    ∑  KE1                  + ∑  U1 + ∑  Wext =             ∑  KE2                    + ∑  U2
{(1/2)I1,cm ω1

2+ (1/2)mv1
2} +   0      +   0         = {(1/2)I2,cm ω2

2+ (1/2)mv2
2}+ mgh,

where h is the vertical rise of the ball's center of mass.

e.)  We know that vcm = Rω .  Using that and substituting Icm for a

ball into the equation yields:

       .5 [(2/5)mR2] (v1/R)2 + .5 mv1
2 = .5 [(2/5)mR2](v2/R)2 + .5mv2

2+  mgh

     (1/5)mv1
2 + .5mv1

2= (1/5)mv2
2 + .5mv2

2 + mgh

        (7/10)mv1
2 = (7/10)mv2

2 + mgh

⇒      v2 = [[.7v1
2 - gh2]/(.7)] 1/2

   = [v1
2 - 1.43gh]1/2.

f.)  To find h, we need to use trig to determine the VERTICAL distance
traveled as the ball rolled .3 meters up the incline.  We know that the
definition of the sine of an angle is equal to "the side opposite the angle
divided by the hypotenuse."  In this case, the "opposite side" is h and the
hypotenuse is .3 meters.  Using this, we get:

  h = (.3 meters) (sin 30o)
     = .15 meters.

g.)  Putting in the numbers, we get:
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v2 = [(8 m/s)2 - 1.43(9.8 m/s2)(.15 meters)]1/2

     = 7.87 m/s.

The "pure rotation" approach:

h.)  Reiterating what has previously been stated, we know that if we
look at an object's instantaneous motion, we can't tell whether the object is
rolling or moving in pure rotation about a point on its perimeter.  We've
analyzed the "conservation of energy" problem outlined above from the
first perspective.  Now we will deal with the problem using the "pure
rotation" approach.

i.)  The sketch in
Figure 8.37 assumes the
ball is executing a pure
rotation (instantaneously)
about a Point P located at
the intersection of the ball
and the incline.  If we take
the angular velocity of the
ball about P at that in-
stant to be   ω 1 , the ball's
initial kinetic energy will be
purely rotational about
Point P and will equal:

    KE1,tot = (1/2)I1,p ω1
2.

A similar expression defines the ball's kinetic energy after traveling up the
incline .3 meters.

j.)  For the sake of ease, let us define the gravitational potential energy
of the ball at Position 1 as zero.

k.)  Writing out the conservation of energy equation, we get:

      ∑  KE1      +  ∑  U1  + ∑  Wext  =     ∑  KE2       + ∑  U2
 (1/2)I1,p ω1

2   +    0       +    0          = (1/2)I2,p ω2
2  +  mgh.



Chapter 8--Rotational Motion

295

l.)  We know the moment of inertia about the center of mass; we need
the moment of inertia about the pin.  Using the Parallel Axis Theorem, we
get:

Ip = [(2/5) mR2] + mR2

    =  (7/5)mR2.

m.)  Substituting and solving yields:

   (1/2)I1,p ω1
2  = (1/2)I2,p ω2

2 +  mgh

(1/2) [(7/5) mR2]ω1
2  = (1/2)[(7/5) mR2]ω2

2 +  mgh   

         (7/10) mR2ω1
2  = (7/10)mR2 ω2

2 +  mgh

⇒     ω2 = [.7R2 ω1
2 - gh]/(.7R2)]1/2

   = [ω1
2 - 1.43gh/R2]1/2.

n.)  To determine the velocity of the center of mass, we will have to use
vcm = Rω .  Doing so yields:

ω2 = [ω1
2 - 1.43 gh/R2]1/2

⇒   vcm = R [ω1
2 - 1.43 gh/R2]1/2

     = [R2ω1
2 - R2(1.43 gh/R2)]1/2

    = [v1
2 - 1.43 gh]1/2.

As expected, our solutions from the two approaches are the same.

Note: WHICH APPROACH IS BEST?  It depends upon the problem.  The
first requires more terms in the conservation of energy equation; the second
utilizes a simpler form of the conservation of energy equation but requires the use
of the parallel axis theorem.

My suggestion?  Learn both approaches and use whichever seems easiest
for a given problem.
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L.) Comments on Test Questions:  N.S.L. and ENERGY Considerations:

1.)  When you are asked to determine an acceleration or angular
acceleration, the first approach you should consider is Newton's Second Law.  It
won't always work, but it is one of the most powerful acceleration-involved
approaches available to you.

When you are asked to determine a velocity or angular velocity in a non-
collision situation, the first approach you should consider is conservation of
energy.  Again, it will not always work but it is a very powerful approach.

2.)  A typical test question will have a number of parts to it.  You could, for
instance, be given a ball rolling down an incline and be asked to:

a.)  Derive an expression for the acceleration of the system;

b.)  Derive an expression for the velocity of the ball after having rolled
down the incline a distance h;

c.)  Determine the angular velocity of the ball at the point defined in Part b.

3.)  You no longer have the cues available in previous chapters (i.e., you can
no longer assume that because the chapter you are studying is, for instance,
about Newton's Second Law, that the test problems will be Newton's Second Law
problems only).  You must now first identify the kind of problem you are looking
at, then have the wherewithal to use the appropriate approach.

M.)  Conservation of Angular Momentum:

1.)  Just as a body moving in straight-line motion has momentum defined
as the product of its inertia (its mass) and its velocity, a rotating body has
angular momentum defined as the product of its rotational inertia (its moment of
inertia) and its angular velocity.  Mathematically, these two are:

p = mv              and                L = Iωω .

Note 1:  Both momentum and angular momentum are vectors.  As you will
never have to worry about two or three-dimensional angular momentum, the only
part of the vector notation you will normally use when writing out an angular
momentum quantity is the sign.  An angular momentum is considered "+" if it is
associated with motion that is counterclockwise relative to the point about which
the angular momentum is calculated (if this is a pure rotation, positive angular
momentum would correspond to positive angular velocity). Negative angular
momentum is just the opposite.
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Note 2:  Although you will see some interesting demonstrations having to
do with angular momentum, you will not be asked to deal with it on a test aside
from the standard "ice skater going into a spin" problem.  In short, read the rest
of this for background but not for test preparation.

2.)  Newton observed that there exists a relationship between the net force
acting on a body and the body's change of momentum.   In one dimension, that
relationship is:

Fnet = dp/dt

or, if the force is constant and the time interval large,

Fnet = ∆ p/ ∆ t.

A similar relationship exists between the net torque acting on a body and the
body's change of angular momentum.  That relationship is:

ΓΓnet = dL/dt

or, if the torque is constant and the time interval large,

ΓΓnet = ∆ L/ ∆ t.

Big Note:  If the sum of the net external torque is zero, the CHANGE of the
system's ANGULAR MOMENTUM will be ZERO and the ANGULAR
MOMENTUM will be CONSERVED.

3.)  In dealing with torque calculations, we found that there are two
general ways to determine the net torque being applied to a body.

a.)  Using strictly translational variables, we write:

         ΓΓ net = r x Fnet.

b.)  Using strictly rotational variables, we write:

 ΓΓnet = Iαα .

4.)  Analogous to the torque situation, there are two general ways to
determine the angular momentum of a body:

a.)  Using strictly translational variables (instantaneous), we write:
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 L = r x p.

b.)  Using strictly rotational variables we write:

   L = Iωω .

5.)  Bottom line:  There are two ways to determine the angular momentum
of a point mass.  If you know the moment of inertia of the body about its axis of
rotation and its angular velocity, you can use L = Iω  (this also works for extended
objects).  If you know the body's instantaneous momentum (mv) and a position
vector r that defines its position relative to the axis of rotation, you can use the
relationship L =     rxp .

a.)  Example:  Determine the angular momentum of
an object of mass m circling with velocity magnitude v
and angular velocity ω  a distance R units from the axis
of rotation (see sketch in Figure 8.38).

i.)  The rotational relationship:  Noting that the
moment of inertia of a point mass a distance R units
from the axis of rotation is mR2, the magnitude of
the angular momentum is:

  L = Iω
             = (mR2) ω .

 
 ii.)  The translational relationship:  Noting that the magnitude of

the instantaneous momentum of the body is p = mv, and that the angle
between the line of r and the line of p is 90o, we have:

L =     rxp

       = r (mv sin 90o)
      = mvR.

Noting additionally that v = Rω , we can write:

L = mvR
       = m (Rω ) R
       = m R2 ω .

In both cases, the body's angular momentum is the same.
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6.)  Earlier, it was pointed out that when the net torque acting on a body
equals zero, Γ net = ∆ L/ ∆ t = 0.  This implies the angular momentum L does not
change with time (i.e., L is constant).  An expanded way of stating this is
embodied in the conservation of angular momentum equation.  Analogous to the
modified conservation of momentum equation, this relationship for one
dimensional rotational motion (i.e., rotational about a fixed axis) is written as:

∑  L1 + ∑  ( Γext ∆ t) = ∑  L2.

a.)  This relationship states that in a particular direction, the sum of
the angular momenta of all the pieces of a system at time t1 will equal the
sum of all of the angular momenta at time t2 if there are no external torques

acting on the system to change the net angular momentum during the time
period.  If external torques do exist, the final angular momentum increases
or decreases during the time period by ∑ ( Γ ext ∆ t).

b.)  When the ∑ ( Γ ext ∆ t) term is zero, angular momentum is said to
be conserved.  This occurs either when there are no external torques acting
on the system or when external torques present are so small and/or act over
such a tiny ∆ t that to a good approximation they do not appreciably alter
the system's motion (hence, the system's total angular momentum).

c.)  The most common use of the conservation of angular momentum is
in the analysis of collision problems (explosion problems, for instance, are
nothing more than fancy collision problems).  Freewheeling collisions
happen so quickly that even if there are external torques acting on the
system, the total angular momentum of the system just before the collision
and just after the collision will be the same.  In other words, angular
momentum is usually conserved through a collision.

7.)  Example #1 (situation in which a system's moment of inertia changes
but no external torques are applied):  An ice skater begins a spin with his arms
out.  His angular velocity at the beginning of the spin is ω 1= 2 radians/sec and his

moment of inertia is 6 kg.m2.  As the spin proceeds, he pulls his arms in,
decreasing his moment of inertia to 4.5 kg.m2.  What is his angular velocity after
pulling in his arms?
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Solution:  Figures 8.39a and 8.39b show the skater before and after pulling
in his arms.  The work required to do the pulling is provided by the "burning" of
chemical energy wrapped up in the muscles of his body.  The force applied due to
that exertion provides no net torque (not only would any such torque be internal
to the system if it existed, there is in fact no torque at all because the line of the
muscle forces acts through the axis of rotation).

As there are no external torques being applied to the skater, his angular
momentum must remain the same throughout (i.e., it is conserved).

a.)  At the beginning of the spin, his angular momentum is:

      L1 = I1ω1
 = (6 kg.m2) (2 rad/sec)

= 12 kg.m2/s.

b.)  After his arms are pulled in, his moment of inertia decreases and
the angular momentum expression becomes:

     L2 = I2ω2
= (4.5 kg.m2) (w2).

c.)  Equating the two angular momentum quantities:

L1 = L2
       12 kg.m2/s = (4.5 kg.m2) (w2)
            ⇒      ω2 = 2.67 rad/sec.
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FIGURE 8.40a FIGURE 8.40b
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Note:  Although angular momentum is conserved here, energy is not
conserved.  The skater has to use chemical energy within his muscles in pulling in
his arms.  A comparison of the energy before and after the pull-in shows that
there is more kinetic energy in the system after the pull-in than before.  (Try it.
You should find that E1= 12 joules while E2= 16 joules.)

8.)  Example #2 (situation in which a system's moment of inertia changes
but no external torques are applied):  A child of mass 40 kg walks from the edge
of a 4 meter radius merry-go-round (moment of inertia Im.g.r. = 700 kg.m2) to a
position 1.5 meters from the merry-go-round's center.  If the system initially
rotates at 3 radians/second, what is the system's angular velocity once the kid
reaches the 1.5 meter mark?  See Figures 8.40a and 8.40b for "before and after"
views.

Solution:

a.)  Once again, any change in the angular momentum of the merry-go-
round will be due to a torque exerted by the walking kid.  But according to
Newton's Third Law, any torque the kid exerts on the merry-go-round must
be matched by an equal and opposite torque exerted by the merry-go-round
on the kid.  In other words, there are only internal torques acting on the
system.  This implies that angular momentum is conserved.

b.)  With that in mind:

         L1,tot = L2,tot
[L1,kid + L1,m.g.r.] = [L2,kid + L2,m.g.r.]
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        [I1,kid ω1 + Im.g.r. ω1] = [I2,kid ω2 + Im.g.r. ω2]

(mR1
2) ω1 + (700 kg.m2) ω1 = (mR2

2) ω2 + (700 kg.m2) ω2

(40 kg)(4 m)2(3 rad/sec) + (700 kg.m2) (3 rad/sec)
= (40 kg)(1.5 m)2 ω2 + (700 kg.m2) ω2

  ⇒     ω2 = 5.1 rad/sec.

Note:  This makes sense.  If the moment of inertia of the kid decreases as
she gets closer to the center of the merry-go-round, the system's angular velocity
must increase if angular momentum is to remain constant.

9.)  Example #3 (situation in which angular momentum is conserved through
a collision):  A child of mass m runs clockwise with velocity v1 right next to a merry-

go-round of mass M, radius R, and moment of inertia .5MR2 (i.e., the child's radius
of motion is effectively R).  The merry-go-round is moving counterclockwise with
angular velocity   ω 1 , where   ω 1  is not related to v1.  The child jumps on at the merry-
go-round's edge.  What is the final velocity of the child?

a.)  The torque that changes the child's motion is produced by the
child's interaction with the merry-go-round, and the torque that changes
the merry-go-round's motion will be produced by its interaction with the
child.  In other words, the torques in the system will be internal.  As such,
the total angular momentum before the collision and after the collision
must be the same.

b.)  With that in mind:
         L1,tot = L2,tot

[L1,kid + L1,m.g.r.] = [L2,kid + L2,m.g.r.]

       [-mv1R + (.5MR2)ω1] = [mv2R + (.5MR2) ω2].

Note 1:  We are assuming that the merry-go-round slows with the
collision, but that it continues in the counterclockwise (i.e., positive) direction.
That means the child reverses direction with the collision.

Note 2:  The child's initial angular momentum is associated with
clockwise motion.  As such, the angular momentum is negative.  If you don't
believe me, do rxp and determine the appropriate sign for the cross product.

As v2 = Rω 2 (remember, v1 ≠ Rω 1) we can write:
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Contact point's velocity is zero!

     [-mv1R + (.5MR2)ω1] = [mv2R + (.5MR2)(v2/R)].

Canceling out R terms and solving, we get:

     v2 = [-mv1 + (.5MR)ω1]/[.5M + m].

N.)  Parting Shot and a Bit of Order:

1.)  For every translational parameter, there is a rotational parameter.  If you
are unsure what the rotational kinetic energy equation is, for instance, think about the
translational kinetic energy equation and substitute in I's for m's and ω 's for v's.

2.)  Aside from forces, there are only three or four parameters you will ever
be asked to determine on, say, a semester final: accelerations (angular or
translational), velocities (angular or translational), distances traveled (angular
or translational), and/or time of travel.

As things stand, you have a number of approaches that can generate
equations that will allow you to solve for any or all of the parameters listed
above.  All you have to do is acquire the ability to look at a problem, decide the
appropriate approach to use, and generate the needed equations.

-------------------------------------------------xxxxx-----------------------------------------------------

Note from Section I:  Is the instantaneous ve-
locity of the contact point of a rolling object really
zero?  To the right is a series of snapshots of a
point on a ball that is rolling with constant
angular velocity.  Consider what happens when the
point approaches and comes in contact with the
floor.  In the y-direction, the point transits from
moving downward to moving upward.  At that
transition (i.e., at the contact point), the y-com-
ponent of the point's velocity must be zero.  In the
x-direction, the net horizontal distance traveled by
the point as it approaches contact gets smaller
and smaller (i.e., it's slowing down), then gets
larger and larger after making contact (i.e., it's
speeding up).  At that transition (i.e., at the
contact point), the x-component of the point's
velocity is zero.  In short, the net instantaneous
velocity of the point really is zero when it touches the ground.
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QUESTIONS

8.1)  A ball and a hoop of equal mass and radius start side by side and proceed to
roll down an incline.  Which reaches the bottom first?  Explain.

8.2)  If you drive a car with oversized tires, how will your speedometer be
affected?

8.3)  Assume global warming is a reality.  How will the earth's moment of inertia
change as the Arctic ice caps melt?

8.4)  Artificial gravity in space can be produced by rotation.  How so?  Assume a
rotating space station produces an artificial acceleration equal to g.  If the
rotational speed is halved, how will that acceleration change?

8.5)  Make up a conceptual graph-based question for a friend.  Make it a real
stinker, but give enough information so the solution can be had (no fair giving an
impossible problem).

8.6)  A beam of length L is pinned at one end.  It is allowed to freefall
around the pin, angularly accelerating at a rate of α θ= k cos , where k
is a constant.  If you know the angle at which it started its freefall, can
you use rotational kinematics to determine the angular position of the
beam after t = .2 seconds?  Explain.

8.7)  The angular velocity of an object is found to be -4 j radians per
second.

a.)  What does the unit vector tell you?
b.)  What does the negative sign tell you?
c.)  What does the number tell you?
d.)  How would questions a through c have changed if the -4 j had been an

angular position vector?
e.)  How would questions a through c have changed if the -4 j had been an

angular acceleration vector?

8.8)  A circular disk sits on an incline.  When released, it freely rolls up hill.
What must be true of the disk?

8.9)  Two people want to fill up their respective water
pitchers.  Both use a sink in which there are stacked
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plates.  Neither is particularly fastidious, so each precariously perches his
pitcher on the plates (notice I've made them guys?), then turns the faucet on.
Which orientation is most likely to get the user into trouble?  Will the trouble
surface immediately or will it take time?  Explain.

8.10)  A group of kids hold hands.
The kid at one end stays fixed
while all the rest try to keep the
line straight as they run in a
circle (when I was a kid, we called
this game crack the whip).  As you
can see in the sketch, the farther
a kid is from the stationary
center, the faster that kid has to
move to keep up.  If the speed of
the kid one spot out from the
center is v, what is the speed of
the kid four spots out from the center (see sketch)?  You can assume that each kid
is the same size and takes up the same amount of room on the line.

8.11)  A light, horizontal rod is pinned at one end.  One of
your stranger friends places a mass 10 centimeters from
the pin and, while you are out of the room, takes a
mysterious measurement.  She then takes the same
measurement when the mass is 20 centimeters, 30
centimeters, and 40 centimeters from the end.  You get
back into the room to find the graph shown to the right on the chalkboard.  Your
friend suggests that if you can determine what she has graphed, there might be
something in it for you.  What do you think she has graphed?

8.12)  A car rounds a corner.  It goes into the
curve with speed v1 and exits the curve with
greater speed v2.  Assume the magnitude of the
velocity changes uniformly over the motion and
the motion is circular and in the x-y plane (see
sketch).

a.)  On the sketch, draw the direction of
acceleration of the car at the two points shown.

b.)  Identify the car's angular acceleration at the two points.
c.)  Why are angular parameters preferred over translational parameters

when it comes to rotational motion?
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8.13)  A rotating wheel
is supported by a fixed
rod oriented as shown.
A force F is applied to
the wheel.  At the
moment depicted in
the sketch:

a.)  In what direc-
tion is the
torque due to
F, relative to
the wheel's
center?

b.)  In what direc-
tion is the
wheel's resulting angular acceleration?

c.)  In what direction is the wheel's angular momentum?

8.14)  Can an object that is not translating have kinetic energy?

8.15)  A meter stick sitting on a frictionless surface has a force F
applied at its center of mass.  The same force is then applied to an
identical meter stick halfway between its center of mass and its end (see
sketch).

a.)  In the second situation, why might the phrase the stick's
acceleration due to F be somewhat misleading?

b.)  In the second situation, the phrase the stick's acceleration due to
F is misleading but the phrase the stick's angular acceleration due to F is
NOT misleading.  How so?

c.)  Will the acceleration of each stick's center of mass be different in the two
situations?  If so, how so?

d.)  Will the stick's angular acceleration about its center of mass be different
in the two situations?   If so, how so?

e.)  Will the velocity of each stick's center of mass be different?  If so, how so?
f.)  Will the angular velocity about the stick's center of mass be different in

the two situations?  If so, how so?
g.)  Assume the force in both cases acts over a small displacement d.  How does

the work done in each case compare?
h.)  Assume the force in both cases acts over a small center of mass dis-

placement d (say, 2 centimeters).  How does the work done in each case
compare?
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8.16)  Why does a homogeneous ball released from rest roll downhill?  That is,
what is going on that motivates it to roll?  (Hint:  No, it's not just that there is a
force acting!  There are all sorts of situations in which forces act and rolling does
not occur.)

8.17)  A spinning ice skater with his arms stretched outward has kinetic energy,
angular velocity, and angular momentum.  If the skater pulls his arms in, which
of those quantities will be conserved?  For the quantities that aren't conserved,
how will they change (i.e., go up, go down, what?)?  Explain.  (Hint:  I would
suggest you begin by thinking about the angular momentum.)

8.18)  An object rotates with some angular velocity.  The angular velocity is
halved.  By how much does the rotational kinetic energy change?

8.19)  If you give a roll of relatively firm toilet paper an initial push on
a flat, horizontal, hardwood floor, it may not slow down and come to a
rest as expected but, instead, pick up speed.  How so?

8.20)  A meter stick of mass m sits on a frictionless surface.  A hockey puck of
mass 2m strikes the meter stick perpendicularly at the stick's center of mass (call
this case A).  A second puck strikes an identical meter stick in the same way on
an identical frictionless surface, but does so halfway between the stick's center of
mass and its end (call this case B).

a.)  Is the average force of contact going to be different in the two cases?  If so,
how so?

b.)  Is the puck's after-collision velocity going to be different in the two cases?
If so, how so?

c.)  Is the puck's after-collision angular velocity (relative to the stick's center
of mass) going to be different in the two cases?  If so, how so?

8.21)  A meter stick on a frictionless surface is pinned at its center of mass.  A
puck whose mass is the same as that of the meter stick strikes and sticks to the
meter stick at the .33 meter mark.  A second meter stick experiences exactly the
same situation except that its puck strikes and sticks at its end.

a.)  Is energy conserved through each collision?
b.)  In which case will the final angular speed be larger, and by how much?

8.22)  A rotating ice skater has 100 joules of rotational kinetic energy.  The
skater increases her moment of inertia by a factor of 2 (i.e., she extends her hugely
muscular arms outward).  How will her rotational speed change?

8.23)  It is easier to balance on a moving bicycle than on a stationary one.  Why?
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8.24)  A disk lying face-up spins without translation on a
frictionless surface.  At its center of mass, its angular velocity about
an axis perpendicular to its face is measured and found to equal N.
Its angular momentum at that point is measured to be M.

a.)  Is there any other point P on the disk where the angular
velocity about P is equal to N?  Explain.

b.)  Is there any other point P on the disk where the angular momentum about
P is equal to M?  Explain.

8.25)  A string threaded through a hole in a frictionless table
is attached to a puck.  The puck is set in motion so that it
circles around the hole.  The string is pulled, decreasing the
puck's radius of motion.  When this happens, the puck's
angular velocity increases.  Explain this using the idea of:

a.) Angular momentum.
b.)  Energy.

8.26)  When a star supernovas, it blows its outer cover outward and its core
inward.  For moderately large stars (several solar masses), the implosion can
produce a structure that is so dense that one solar mass's worth of material
would fit into a sphere of radius less than 10 miles.  All stars rotate, so what
would you expect the rotational speed of the core of a typical star to do when and
if the star supernovaed?  Explain using appropriate conservation principles.

8.27)  A cube and a ball of equal mass and approximately
equal size are d units apart on a very slightly frictional incline
plane (frictional enough for the ball to grab traction but not
frictional enough to take discernible amounts of energy out of
the system).  By the time the ball gets to the bottom of the
ramp, will the distance d be larger, smaller, or the same as it
was at the beginning of the run?  Use conservation principles to explain.

8.28)  Assume global warming is a reality.  How will the period of the earth's
rotation change as the Arctic ice caps melt?

8.29)  An object of mass m moves in circular motion with a
radius of motion equal to r.   At a particular instance, a
second mass of the same size moving horizontally passes
the first mass (see sketch).  Is it possible for the two objects
to have the same angular momentum?
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PROBLEMS

8.30)  An automobile whose wheel radius is .3 meters moves at 54 km/hr.
The car applies its brakes uniformly, slowing to 4 m/s over a 50 meter distance.

a.)  Show that 54 km/hr is equal to 15 m/s.
b.)  Show that a 15 m/s car speed corresponds to a wheel angular

velocity of 50 radians/second and that 4 m/s corresponds to 13.33 rad/sec.
c.)  Show that a translational displacement of 50 meters corresponds to

a wheel angular displacement of 166.7 radians.

8.31)  The earth has a mass of 5.98x1024 kilograms, a period of
approximately 24 hours (the period is the time required for one rotation about its
axis), and a radius of 6.37x106 meters.

a.)  What is the earth's angular velocity?
b.)  What is the translational velocity of a point on the equator?
c.)  What is the translational velocity of a point on the earth's surface

located at an angle 60o relative to a line from its center through its
equator?

d.)  Assuming it is a solid, homogeneous sphere, what is the earth's
moment of inertia about its axis?

8.32)  A block of mass m1 = .4 kilograms sits on a frictional table
(coefficient of kinetic friction mk = .7).  A massless string is attached to the block,
threaded over a massive pulley (mass mp = .08 kg; radius Rp = .1875 meters; and

moment of inertia Icm=.5mR2 about the

pulley's center of mass is equal to 1.4x10-3

kg.m2), and attached to a hanging mass mh =

1.2 kg (see Figure I).  If the hanging weight is
allowed to freefall from rest:

a.)  Derive an expression for the
angular acceleration of the pulley during
the freefall.  Put in the numbers when
you are finished.

b.)  What is the hanging mass's
acceleration during the freefall?
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c.)  Derive an expression for the angular velocity of the pulley after the
hanging weight has dropped a distance equal to 1.5 meters.  Do not use
kinematics.  Put in the numbers after you have finished the derivation.

d.)  What is the translational velocity of the hanging mass after having
dropped a distance equal to 1.5 meters (i.e., when the system is in the
configuration outlined in Part c)?  Don't make this hard.  It isn't!

e.)  After falling a distance of h = 1.5 meters, what is the translational
acceleration of the hanging mass?

f.)  Determine the angular momentum of the pulley after the hanging
weight has fallen a distance h = 1.5 meters.

8.33)  A beam of mass mb = 7 kg and length L =1.7 meters is pinned at a

wall and sits at 30o with the horizontal (see Figure II).
A hanging mass mh= 3 kg is attached to the beam's

end, and a wire oriented at a 60o angle with the
horizontal is attached 2L/3 units up from the pin.

a.)  Derive expressions for the tension T in
the wire and the force components acting at the
pin.  Once derived, put in the numbers.

b.)  Assuming the moment of inertia through
the beam's center of mass and perpendicular to
the beam's length (i.e., into the page) is equal to
(1/12)mL2, derive an expression for:

i.)  The moment of inertia of the beam about its pin;
ii.)  The moment of inertia of the hanging mass about the pin;

iii.)  The moment of inertia of the entire system about the pin.
c.)  The wire is cut.  Derive an expression for the initial angular

acceleration of the beam.
d.)  Derive an expression for the instantaneous translational

acceleration of the beam's center of mass just after the wire is cut.
e.)  Derive an expression for the beam's angular velocity once it has

reached a horizontal position.  Put in the numbers once done and do not use
kinematics.

f.)  Determine the translational velocity of the beam's center of mass
once it reaches a horizontal position.

g.)  Determine the angular momentum of the system once the beam
has reached the horizontal.

h.)  Is angular momentum conserved?  Explain.

8.34)  A merry-go-round has a mass m = 225 kg and a radius R = 2.5
meters.  Three equally spaced children push it from rest tangent to its
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circumference until its angular velocity and theirs is .8 radians/second.  At that
point in time, they all hop on.  If we approximate the merry-go-round as a disk; if
the children each have a mass equal to mc = 35 kg; and if they push with 15
newtons of force each:

a.)  Without using kinematics, determine the number of radians
through which the children ran during the push-period.  (Hint:  Think
energy!  Remember also that ∆ s = R ∆θ ).

b.)  Once on, the children proceed to walk from the outer-most part of
the merry-go-round to a point r = 1 meter from the center.  Determine the
angular velocity of the merry-go-round and children once they are at r =1
meter.

c.)  What quantities are conserved as the children move?  Explain.
d.)  What quantities are not conserved as the children move?  Explain.
e.)  Compare the kinetic energy of the system when the children were at

the outer-most part of the merry-go-round and when they were at r1 = 1

meter.  Do these calculated energy values make sense in light of your
response to Parts c and d?  Comment.

8.35)  The freefalling spool shown in Figure III is actually two wheels of
radius Rw = .04 meters separated by an axle whose radius is Ra = .015 meters.  If
the mass of the system is .6 kg and the
moment of inertia about the system's central
axis is Icm = 1.2x10-4 kg.m2:

a.)  Derive an expression for the
angular acceleration of the system
using Icm (the reason for so delineating
will become evident when you read the
next two parts).  Put the numbers in at
the end.

b.)  Determine the moment of
inertia of the system about an axis

FIGURE IIIb

new axis

parallel to the central axis and .015 meters below it.  Call this moment of
inertia Ia.

c.)  Derive an expression for the angular acceleration
of the system using Ia.  Does this expression match the
one derived in Part a?

d.)  Determine the angular velocity of the system
after the system's center of mass has fallen d = .18 meters.
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Assume the motion starts from rest, do not use kinematics, and note that
there is a tension acting here (does this last point matter?).

e.)  Determine the velocity of the center of mass after the system has
fallen a distance d.

8.36)  Two bodies of mass m2
each are attached to either end of
an effectively massless rod of length
d.  The rod is frictionless and is
pinned at its center (see Figure V to
the right).  A falling wad of putty
whose mass is m1 has velocity vo
just before colliding with the far
right mass as shown, sticking to
that mass upon contact.  If m1 = .9

kg, m2 = 2 kg, d = 1.2 meters, and vo
= 2.8 m/s, determine:

a.)  The magnitude of the angular velocity of the rod just after the
collision;

b.)  The amount of energy loss that occurred during the collision, and;
c.)  The net angular displacement of the system from the time just

before the collision to the time when the system came to rest (assume the
system does not rotate through a complete revolution).

8.37)  A mass m (take it to be a
point mass) slides down a frictionless,
circular incline of radius R and collides
with a pinned meter stick of mass 5m
initially hanging in the vertical.  After
the collision, the rod rotates through an
angle θ  before coming to rest (see
Figure VI).  Assuming R = .4d,
determine θ  if:

a.)  The mass m stays at rest
after the collision, and;

b.)  The mass sticks to the
rod.


